我有以下代码:
import numpy as np import matplotlib.pyplot as plt import cifar_tools import tensorflow as tf data, labels = cifar_tools.read_data('C:\\Users\\abc\\Desktop\\temp') x = tf.placeholder(tf.float32, [None, 24 * 24]) y = tf.placeholder(tf.float32, [None, 2]) w1 = tf.Variable(tf.random_normal([5, 5, 1, 64])) b1 = tf.Variable(tf.random_normal([64])) w2 = tf.Variable(tf.random_normal([5, 5, 64, 64])) b2 = tf.Variable(tf.random_normal([64])) w3 = tf.Variable(tf.random_normal([6*6*64, 1024])) b3 = tf.Variable(tf.random_normal([1024])) w_out = tf.Variable(tf.random_normal([1024, 2])) b_out = tf.Variable(tf.random_normal([2])) def conv_layer(x,w,b): conv = tf.nn.conv2d(x,w,strides=[1,1,1,1], padding = 'SAME') conv_with_b = tf.nn.bias_add(conv,b) conv_out = tf.nn.relu(conv_with_b) return conv_out def maxpool_layer(conv,k=2): return tf.nn.max_pool(conv, ksize=[1,k,k,1], strides=[1,k,k,1], padding='SAME') def model(): x_reshaped = tf.reshape(x, shape=[-1,24,24,1]) conv_out1 = conv_layer(x_reshaped, w1, b1) maxpool_out1 = maxpool_layer(conv_out1) norm1 = tf.nn.lrn(maxpool_out1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) conv_out2 = conv_layer(norm1, w2, b2) maxpool_out2 = maxpool_layer(conv_out2) norm2 = tf.nn.lrn(maxpool_out2, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) maxpool_reshaped = tf.reshape(maxpool_out2, [-1,w3.get_shape().as_list()[0]]) local = tf.add(tf.matmul(maxpool_reshaped, w3), b3) local_out = tf.nn.relu(local) out = tf.add(tf.matmul(local_out, w_out), b_out) return out model_op = model() cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model_op, y)) train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost) correct_pred = tf.equal(tf.argmax(model_op, 1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) onehot_labels = tf.one_hot(labels, 2, on_value=1.,off_value=0.,axis=-1) onehot_vals = sess.run(onehot_labels) batch_size = len(data) / 200 print('batch size', batch_size) for j in range(0, 1000): print('EPOCH', j) for i in range(0, len(data), batch_size): batch_data = data[i:i+batch_size, :] batch_onehot_vals = onehot_vals[i:i+batch_size, :] _, accuracy_val = sess.run([train_op, accuracy], feed_dict={x: batch_data, y: batch_onehot_vals}) if i % 1000 == 0: print(i, accuracy_val) print('DONE WITH EPOCH')
当我运行代码时,我收到以下错误:
batch size 225.0 EPOCH 0 Traceback (most recent call last): File "cnn.py", line 66, infor i in range(0, len(data), batch_size): TypeError: 'float' object cannot be interpreted as an integer
我该如何解决这个问题?
谢谢.
您可以使用楼层划分:
batch_size = len(data) // 200