我正在使用Tensorflow构建标准图像分类模型.为此,我有输入图像,每个图像都分配有一个标签({0,1}中的数字).因此,可以使用以下格式将数据存储在列表中:
/path/to/image_0 label_0 /path/to/image_1 label_1 /path/to/image_2 label_2 ...
我想使用TensorFlow的排队系统来读取我的数据并将其提供给我的模型.忽略标签,可以通过使用string_input_producer
和轻松实现这一点wholeFileReader
.这里的代码:
def read_my_file_format(filename_queue): reader = tf.WholeFileReader() key, value = reader.read(filename_queue) example = tf.image.decode_png(value) return example #removing label, obtaining list containing /path/to/image_x image_list = [line[:-2] for line in image_label_list] input_queue = tf.train.string_input_producer(image_list) input_images = read_my_file_format(input_queue)
但是,标签在该过程中丢失,因为图像数据被有意地作为输入管道的一部分混洗.通过输入队列将标签与图像数据一起推送的最简单方法是什么?
使用slice_input_producer
提供了更清洁的解决方案.Slice Input Producer允许我们创建一个包含任意多个可分离值的输入队列.这个问题的片段如下所示:
def read_labeled_image_list(image_list_file): """Reads a .txt file containing pathes and labeles Args: image_list_file: a .txt file with one /path/to/image per line label: optionally, if set label will be pasted after each line Returns: List with all filenames in file image_list_file """ f = open(image_list_file, 'r') filenames = [] labels = [] for line in f: filename, label = line[:-1].split(' ') filenames.append(filename) labels.append(int(label)) return filenames, labels def read_images_from_disk(input_queue): """Consumes a single filename and label as a ' '-delimited string. Args: filename_and_label_tensor: A scalar string tensor. Returns: Two tensors: the decoded image, and the string label. """ label = input_queue[1] file_contents = tf.read_file(input_queue[0]) example = tf.image.decode_png(file_contents, channels=3) return example, label # Reads pfathes of images together with their labels image_list, label_list = read_labeled_image_list(filename) images = ops.convert_to_tensor(image_list, dtype=dtypes.string) labels = ops.convert_to_tensor(label_list, dtype=dtypes.int32) # Makes an input queue input_queue = tf.train.slice_input_producer([images, labels], num_epochs=num_epochs, shuffle=True) image, label = read_images_from_disk(input_queue) # Optional Preprocessing or Data Augmentation # tf.image implements most of the standard image augmentation image = preprocess_image(image) label = preprocess_label(label) # Optional Image and Label Batching image_batch, label_batch = tf.train.batch([image, label], batch_size=batch_size)
另请参阅TensorVision示例中的generic_input_producer,了解完整的输入管道.
解决此问题有三个主要步骤:
tf.train.string_input_producer()
使用包含原始的,以空格分隔的字符串的字符串列表填充包含文件名和标签的字符串.
使用tf.read_file(filename)
而不是tf.WholeFileReader()
读取您的图像文件.tf.read_file()
是一个无状态的op,它使用单个文件名并生成一个包含文件内容的字符串.它的优点是它是一个纯函数,因此很容易将数据与输入和输出相关联.例如,您的read_my_file_format
功能将变为:
def read_my_file_format(filename_and_label_tensor): """Consumes a single filename and label as a ' '-delimited string. Args: filename_and_label_tensor: A scalar string tensor. Returns: Two tensors: the decoded image, and the string label. """ filename, label = tf.decode_csv(filename_and_label_tensor, [[""], [""]], " ") file_contents = tf.read_file(filename) example = tf.image.decode_png(file_contents) return example, label
read_my_file_format
通过从以下位置传递单个出列元素来调用新版本input_queue
:
image, label = read_my_file_format(input_queue.dequeue())
然后,您可以在模型的其余部分中使用image
和label
张量.