当前位置:  开发笔记 > 编程语言 > 正文

随机矩阵的所有行的快速随机加权选择

如何解决《随机矩阵的所有行的快速随机加权选择》经验,为你挑选了1个好方法。

numpy.random.choice 允许从矢量加权选择,即

arr = numpy.array([1, 2, 3])
weights = numpy.array([0.2, 0.5, 0.3])
choice = numpy.random.choice(arr, p=weights) 

选择1概率为0.2,2选择概率为0.5,3选择概率为0.3.

如果我们想以矢量化的方式快速完成2D阵列(矩阵),每个行都是概率矢量,该怎么办?也就是说,我们想要一个随机矩阵的选择向量?这是超级慢的方式:

import numpy as np

m = 10
n = 100 # Or some very large number

items = np.arange(m)
prob_weights = np.random.rand(m, n)
prob_matrix = prob_weights / prob_weights.sum(axis=0, keepdims=True)

choices = np.zeros((n,))
# This is slow, because of the loop in Python
for i in range(n):
    choices[i] = np.random.choice(items, p=prob_matrix[:,i])

print(choices):

array([ 4.,  7.,  8.,  1.,  0.,  4.,  3.,  7.,  1.,  5.,  7.,  5.,  3.,
        1.,  9.,  1.,  1.,  5.,  9.,  8.,  2.,  3.,  2.,  6.,  4.,  3.,
        8.,  4.,  1.,  1.,  4.,  0.,  1.,  8.,  5.,  3.,  9.,  9.,  6.,
        5.,  4.,  8.,  4.,  2.,  4.,  0.,  3.,  1.,  2.,  5.,  9.,  3.,
        9.,  9.,  7.,  9.,  3.,  9.,  4.,  8.,  8.,  7.,  6.,  4.,  6.,
        7.,  9.,  5.,  0.,  6.,  1.,  3.,  3.,  2.,  4.,  7.,  0.,  6.,
        3.,  5.,  8.,  0.,  8.,  3.,  4.,  5.,  2.,  2.,  1.,  1.,  9.,
        9.,  4.,  3.,  3.,  2.,  8.,  0.,  6.,  1.])

这篇文章表明,cumsumbisect可能是一个潜在的办法,并很快.但是虽然numpy.cumsum(arr, axis=1)可以沿numpy数组的一个轴执行此操作,但该bisect.bisect函数一次只能在单个数组上运行.同样,也numpy.searchsorted只适用于1D阵列.

有没有一种快速方法只使用矢量化操作来做到这一点?



1> Warren Wecke..:

这是一个非常快速的完全矢量化版本:

def vectorized(prob_matrix, items):
    s = prob_matrix.cumsum(axis=0)
    r = np.random.rand(prob_matrix.shape[1])
    k = (s < r).sum(axis=0)
    return items[k]

理论上,searchsorted用于在累积求和概率中查找随机值是正确的函数,但是m相对较小,k = (s < r).sum(axis=0)最终会更快.它的时间复杂度是O(m),而searchsorted方法是O(log(m)),但这只会更大m. 另外,cumsum是O(m),所以两者vectorized和@ perimosocordiae improved都是O(m).(如果你的m实际上要大得多,你必须运行一些测试,看看m在这个方法变慢之前有多大.)

这是我得到的时间m = 10n = 10000(使用函数originalimproved@ perimosocordiae的答案):

In [115]: %timeit original(prob_matrix, items)
1 loops, best of 3: 270 ms per loop

In [116]: %timeit improved(prob_matrix, items)
10 loops, best of 3: 24.9 ms per loop

In [117]: %timeit vectorized(prob_matrix, items)
1000 loops, best of 3: 1 ms per loop

定义函数的完整脚本是:

import numpy as np


def improved(prob_matrix, items):
    # transpose here for better data locality later
    cdf = np.cumsum(prob_matrix.T, axis=1)
    # random numbers are expensive, so we'll get all of them at once
    ridx = np.random.random(size=n)
    # the one loop we can't avoid, made as simple as possible
    idx = np.zeros(n, dtype=int)
    for i, r in enumerate(ridx):
        idx[i] = np.searchsorted(cdf[i], r)
    # fancy indexing all at once is faster than indexing in a loop
    return items[idx]


def original(prob_matrix, items):
    choices = np.zeros((n,))
    # This is slow, because of the loop in Python
    for i in range(n):
        choices[i] = np.random.choice(items, p=prob_matrix[:,i])
    return choices


def vectorized(prob_matrix, items):
    s = prob_matrix.cumsum(axis=0)
    r = np.random.rand(prob_matrix.shape[1])
    k = (s < r).sum(axis=0)
    return items[k]


m = 10
n = 10000 # Or some very large number

items = np.arange(m)
prob_weights = np.random.rand(m, n)
prob_matrix = prob_weights / prob_weights.sum(axis=0, keepdims=True)

推荐阅读
拾味湖
这个屌丝很懒,什么也没留下!
DevBox开发工具箱 | 专业的在线开发工具网站    京公网安备 11010802040832号  |  京ICP备19059560号-6
Copyright © 1998 - 2020 DevBox.CN. All Rights Reserved devBox.cn 开发工具箱 版权所有